«Зима 2025»

Презентация на тему "Прямоугольный треугольник"

Презентация содержит всебе красочный материал по данной теме: решение разнообразных задач.

Олимпиады: Математика 1 - 11 классы

Содержимое разработки

КЛАСС Учитель: Ибаева Г.Г.

КЛАСС

Учитель: Ибаева Г.Г.

Из истории математики  Прямоугольный треугольник занимает почётное место в вавилонской геометрии, упоминание о нём часто встречается в папирусе Ахмеса .  Термин гипотенуза происходит от греческого hypoteinsa , означающего тянущаяся под чем либо , стягивающая . Слово берёт начало от образа древнеегипетских арф, на которых струны натягивались на концы двух взаимно перпендикулярных подставок.  Термин катет происходит от греческого слова « катетос », которое означало отвес , перпендикуляр . В средние века словом катет  означали высоту прямоугольного треугольника, в то время, как другие его стороны называли гипотенузой, соответственно основанием. В XVII веке слово катет  начинает применяться в современном смысле и широко распространяется, начиная с XVIII века. Евклид  употребляет выражения: «стороны, заключающие прямой угол», - для катетов; «сторона, стягивающая прямой угол», - для гипотенузы.

Из истории математики

Прямоугольный треугольник занимает почётное место в вавилонской

геометрии, упоминание о нём часто встречается в папирусе Ахмеса .

Термин гипотенуза происходит от греческого hypoteinsa ,

означающего тянущаяся под чем либо , стягивающая .

Слово берёт начало от образа древнеегипетских арф, на которых струны

натягивались на концы двух взаимно перпендикулярных подставок.

Термин катет происходит от греческого слова « катетос »,

которое означало отвес , перпендикуляр . В средние века словом катет

означали высоту прямоугольного треугольника, в то время, как другие его

стороны называли гипотенузой, соответственно основанием.

В XVII веке слово катет начинает применяться в современном смысле и

широко распространяется, начиная с XVIII века.

Евклид употребляет выражения:

«стороны, заключающие прямой угол», - для катетов;

«сторона, стягивающая прямой угол», - для гипотенузы.

Определения А Треугольник – это геометрическая фигура, состоящая из трёх точек, не лежащих на одной прямой, и трёх отрезков, соединяющих эти точки. Если один из углов треугольника прямой, то треугольник называется прямоугольным. Сторона прямоугольного треугольника, лежащая против прямого угла, называется гипотенузой , С В а две другие – катетами .

Определения

А

Треугольник – это геометрическая фигура,

состоящая из трёх точек, не лежащих на одной

прямой,

и трёх отрезков, соединяющих эти точки.

Если один из углов треугольника прямой,

то треугольник называется прямоугольным.

Сторона прямоугольного треугольника, лежащая

против прямого угла, называется гипотенузой ,

С

В

а две другие – катетами .

Некоторые свойства прямоугольных треугольников 1. Сумма двух острых углов прямоугольного треугольника равна 90 0 . 2. Катет прямоугольного треугольника, лежащий против угла в 30 0 , равен половине гипотенузы. 3. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30 0 .

Некоторые свойства

прямоугольных треугольников

1. Сумма двух острых углов прямоугольного треугольника равна 90 0 .

2. Катет прямоугольного треугольника, лежащий против угла в 30 0 ,

равен половине гипотенузы.

3. Если катет прямоугольного треугольника равен половине гипотенузы,

то угол, лежащий против этого катета, равен 30 0 .

Признаки равенства прямоугольных треугольников Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны. 2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны. 3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны. 4. Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны.

Признаки равенства

прямоугольных треугольников

  • Если катеты одного прямоугольного треугольника

соответственно равны катетам другого, то такие треугольники равны.

2. Если катет и прилежащий к нему острый угол одного прямоугольного

треугольника соответственно равны катету и прилежащему к нему углу

другого, то такие треугольники равны.

3. Если гипотенуза и острый угол одного прямоугольного треугольника

соответственно равны гипотенузе и острому углу другого,

то такие треугольники равны.

4. Если гипотенуза и катет одного прямоугольного треугольника

соответственно равны гипотенузе и катету другого,

то такие треугольники равны.

15 см 4,2 см Задачи по готовым чертежам В А В 37 0 ? ? 30 0 С А ? А 70 0 С С В D В С ? ? ? 120 0 А В D 8,4 см С А 4 см

15 см

4,2 см

Задачи по готовым чертежам

В

А

В

37 0

?

?

30 0

С

А

?

А

70 0

С

С

В

D

В

С

?

?

?

120 0

А

В

D

8,4 см

С

А

4 см

Контрольный тест 1. Прямоугольным называется треугольник, у которого  а) все углы прямые ;  б) два угла прямые ;  в) один прямой угол .

Контрольный тест

1. Прямоугольным называется треугольник, у которого

а) все углы прямые ;

б) два угла прямые ;

в) один прямой угол .

Контрольный тест 2. В прямоугольном треугольнике всегда  а) два угла острых и один прямой ;  б) один острый угол, один прямой и один тупой угол ;  в) все углы прямые .

Контрольный тест

2. В прямоугольном треугольнике всегда

а) два угла острых и один прямой ;

б) один острый угол, один прямой и один тупой угол ;

в) все углы прямые .

Контрольный тест 3.  Стороны прямоугольного треугольника, образующие прямой угол, называются  а) сторонами треугольника ;  б) катетами треугольника ;  в) гипотенузами треугольника .

Контрольный тест

3. Стороны прямоугольного треугольника, образующие

прямой угол, называются

а) сторонами треугольника ;

б) катетами треугольника ;

в) гипотенузами треугольника .

Контрольный тест 4. Сторона прямоугольного треугольника, противолежащая прямому углу, называется  а) стороной треугольника ;  б) катетом треугольника ;  в) гипотенузой треугольника .

Контрольный тест

4. Сторона прямоугольного треугольника, противолежащая прямому углу, называется

а) стороной треугольника ;

б) катетом треугольника ;

в) гипотенузой треугольника .

Контрольный тест 5. Сумма острых углов прямоугольного треугольника  равна  а) 180 ° ;  б) 100 ° ; в) 90 ° .

Контрольный тест

5. Сумма острых углов прямоугольного треугольника

равна

а) 180 ° ;

б) 100 ° ;

в) 90 ° .

Вы верно ответили на все вопросы !

Вы верно ответили

на все вопросы !

Это интересно Треугольник – это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины. В любом треугольнике:    1.  Против большей стороны лежит больший угол, и наоборот. 2.  Против равных сторон лежат равные углы, и наоборот. 3.  Сумма углов треугольника равна 180 º 4.  Продолжая одну из сторон треугольн ика, получаем  внешний   угол .  Внешний угол треугольника равен сумме внутренних углов, не смежных с ним. 5.  Любая сторона треугольника меньше суммы двух других сторон и  больше их  разности ( a  b – c;  b  a – c;  c  a – b ).

Это интересно

Треугольник – это многоугольник с тремя сторонами (или тремя углами).

Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины.

В любом треугольнике: 

 

1.  Против большей стороны лежит больший угол, и наоборот.

2.  Против равных сторон лежат равные углы, и наоборот.

3.  Сумма углов треугольника равна 180 º

4.  Продолжая одну из сторон треугольн ика, получаем внешний угол .

Внешний угол треугольника равен сумме внутренних углов, не смежных с ним.

5. Любая сторона треугольника меньше суммы двух других сторон и

больше их разности ( a b – c;  b a – c;  c a – b ).

Закрепление темы решением задач

Закрепление темы решением задач

  • № 254; №256 ; №258
Домашнее задание

Домашнее задание

  • № 255;№257
Спасибо  за урок !

Спасибо

за урок !

Получите свидетельство о публикации сразу после загрузки работы



Получите бесплатно свидетельство о публикации сразу после добавления разработки


Серия олимпиад «Зима 2025»



Комплекты учителю



Качественные видеоуроки, тесты и практикумы для вашей удобной работы

Подробнее

Вебинары для учителей



Бесплатное участие и возможность получить свидетельство об участии в вебинаре.


Подробнее