Тип урока: урок усвоения новых знаний
Цели урока:
Образовательные:
Ввести понятие средней линии треугольника; доказать свойство средней линии треугольника, а также теорему о пересечении медиан треугольника; рассмотреть свойства медианы и средней линии треугольника применительно к его площади; научить применять их при решении задач.
Развивающие:
Развивать интерес с к геометрии, логическое мышление, интуицию учащихся; формировать умения чётко и ясно излагать свои мысли;
совершенствовать графическую культуру.
Развивать творческую и мыслительную деятельность учащихся, их интеллектуальные качества: способность к исследовательской деятельности, к синтезу и анализу.
Воспитательные:
Мотивировать детей к самообразованию.
Воспитывать интерес к геометрии, расширять кругозор учащихся
Прививать аккуратность в оформлении геометрических задач, культуру устной речи.
Оборудование, наглядность, электронные приложения к уроку:
Компьютер. Мультимедийный проектор. Документ камера.
Презентация Microsoft PowerPoint.
Структура урока.
Вид деятельности. | № слайдов. | мин. |
1. Постановка цели урока. Эпиграф к уроку. | 1-3 | 2 |
2. Проверка домашнего задания |
| 2 |
3. Повторение изученного материала. Признаки подобия треугольников. | 4-6 | 3 |
4. Понятие средней линии треугольника и её свойство. Математический диктант | 7-9 10-14 | 12 |
5. Физкультминутка. |
| 1 |
6. Свойство медиан треугольника. Следствия. | 15-17 18-21 | 15 |
7. Закрепление нового материала. Решение задач. | 22-23 | 8 |
8. Подведение итогов. | 24 | 2 |
9. Домашнее задание. | 25 | 1 |
Ход урока.
1. Вступительное слово учителя.
Эпиграфом к сегодняшнему уроку взяты слова французского писателя XIX столетия. Анатоль Франс однажды заметил: “Учиться можно только весело… Чтобы переваривать знания, надо поглощать их с аппетитом” (сайд №2).
Давайте последуем совету писателя и на сегодняшнем уроке: будьте активны, внимательны, поглощайте с большим желанием знания, которые пригодятся вам в дальнейшей жизни.
Многие известные мыслители и писатели прошлого обращались к темам о замечательных точках и линиях треугольника. Сегодня мы тоже займемся этим интересным исследованием.
Тема нашего урока «Средняя линия треугольника». Давайте сформулируем, какие цели мы должны достичь: (учащиеся самостоятельно формулируют цели, слайд №3)
Дать определение средней линии треугольника.
Доказать теорему о средней линии треугольника.
Доказать теорему о пересечении медиан треугольника.
2. Проверка домашнего задания.
С помощью документ камеры решение домашнего задания (№ 568 б) из тетради учащегося проектируется на экран. Учащийся комментирует решение.
3. Устная работа. Повторение изученного материала.
Цель: систематизировать базовые знания по теме «Подобие треугольников»; развивать логическое мышление; формировать умение четко и ясно излагать свои мысли.
Чтобы успешно выполнить цели сегодняшнего урока, нам не раз придется обращаться к признакам подобия треугольников. Какие признаки подобия треугольников вы знаете? Учащиеся формулируют признаки подобия треугольников (слайд 4-6).
4. Понятие средней линии треугольника и ее свойства.
Цели: сформулировать определение средней линии треугольника и доказать ее свойство; развивать умение сравнивать и анализировать.
- Что общего у треугольников, изображенных на рисунке? (слайд №7)
Учащиеся самостоятельно дают определение средней линии треугольника(слайд №8).
- Сколько средних линий можно построить в треугольнике?
-Средняя линия треугольника - это замечательная линия треугольника. А чем же она замечательна? Давайте сформулируем и докажем свойство средней линии треугольника (слайд №9).
Теорему учащиеся доказывают самостоятельно (задание получено сильным учащимся предварительно). С целью закрепления понятия и свойства средней линии треугольника проводится математический диктант (решение задач по готовым чертежам; слайд № 10-14). Учащиеся получают карточки, выполняют математический диктант.
Математический диктант
Вариант 1 | Вариант 2 |
1)Две стороны треугольника соединили отрезком, непараллельным третьей стороне. Является ли этот отрезок средней линией данного треугольника? | 1)Точки А и В являются серединами двух сторон треугольника. Как называется отрезок АВ?
|
2)В ∆АВС сторона АВ=7 см. Чему равна средняя линия треугольника, параллельная этой стороне? | 2)Средняя линия треугольника АВD, параллельная стороне ВD, равна 4 см. Чему равна сторона ВD? |
3) Дано: МК=3, KN=4, MN=5. Найти периметр треугольника АВС.
| 3) Дано: АВ=3м, ВС=5м, АС=4м. Найти периметр треугольника MNK.
|
4) Концы отрезка АВ лежат на сторонах треугольника, а его длина равна половине третьей стороны. Обязательно ли: АВ – средняя линия этого треугольника? | 4)Концы отрезка MN лежат на сторонах треугольника. Отрезок MN параллелен третьей стороне и равен его четверти. Обязательно ли: MN – средняя линия этого треугольника? |
5) Периметр треугольника равен 5,9 см. Найти периметр треугольника, отсекаемого одной из его средних линий. | 5)Периметр треугольника равен 7,3 см. Найти периметр треугольника, отсекаемого одной из его средних линий. |
5. Физкультминутка
6. Свойство медиан треугольника
Цель: развивать логическое мышление; способность к исследовательской деятельности, к синтезу и анализу.
Вспомните, что называется медианой треугольника? (слайд №15) Укажите рисунок, на котором изображена медиана.
Свойство медиан треугольника: медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины (слайд № 16).
Теорему учащиеся доказывают самостоятельно (задание получено сильным учащимся предварительно).
-Медиану тоже считают замечательной линией треугольника. Как вы считаете, почему? Вспомните, какие треугольники называются равновеликими (слайд 17)?Давайте, исследуем следующие предположения. В треугольнике провели медиану. Как изменится площадь? (слайд № 18)
| Утверждение: медиана треугольника делит его на два равновеликих треугольника. |
-В параллелограмме, площадь которого равна S, проведены диагонали. Чему равны площади образовавшихся треугольников (слайд №19)?
Следствие 1: диагонали параллелограмма делят его на четыре равновеликих треугольника.
|
|
- В треугольнике проведены три медианы. Являются ли они равновеликими (слайд № 20)?
Следствие 2: медианы треугольника делят его на шесть равновеликих треугольников.
|
|
- В треугольнике проведены средние линии. Чему равна площадь треугольника BMN (слайд № 21)?
Следствие 3: средняя линия треугольника отсекает от данного треугольник, площадь которого равна ¼ площади исходного треугольника.
|
|
7. Закрепление нового материала. Решение задач
Цель: научить учащихся применять приобретенные на уроке знания при решении задач; развивать логическое мышление; прививать аккуратность в оформлении геометрических задач; совершенствовать графическую культуру.
Задача 1. Медианы ВК и ЕМ, треугольника ВСЕ, пересекаются в точке О. Найти SMOK:SCMK (слайд №22).
Задача 2. Решите задачу устно по готовому чертежу (слайд № 23).
| АА1, ВВ1, СС1 – медианы треугольника. Доказать: S AOC1 = S BOC1 S AOB= 2 S A1OB S AOC1 = 1/6 S АВС |
8. Подведение итогов
Рефлексия.
Отрезок, соединяющий середины двух сторон треугольника, называется средней линией треугольника.
Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.
Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2 : 1, считая от вершины.
Средняя линия треугольника отсекает от данного треугольник, площадь которого равна ¼ площади исходного.
Три средние линии треугольника разбивают его на 4 равоновеликих треугольника, площадь каждого из них равна ¼ площади исходного.
Оценки за урок.
9. Домашнее задание
П. 62, вопросы 8, 9 (стр. 160). Задачи № 616, 571.
Литература
Геометрия: Учеб. для 7-9 кл. общеобразоват. учреждений. / Л.С. Атанасян, В.Ф Бутузов, С.Б. Кадомцев и др. – 5-е изд. – М.: Просвещение, 1995. – 335 с.: ил. – ISBN 5-09-006554-3
Лысенко Ф. Ф. Математика. Подготовка к ЕГЭ. – Ростов – на –Дону: «Легион М», 2012.
Алтынов П.И. Геометрия. Тесты. 7-9 кл.
Гилярова М. Г. Поурочные разработки по геометрии: 8 класс. Волгоград: « Учитель - АСТ», 2003.
Интернет-сайты:
Интернет-государство учителей в разделе Инфотека-Математика. http://www.intergu.ru/infoteka/
http://school-collection.edu.ru/
Упражнения для глаз: comp-doctor.ru/eye/eye_upr.php